

Welcome to Wagtail App Pages’s documentation!

Contents:

	Wagtail App Pages
	Features

	Installation
	Stable release

	From sources

	Usage

	Examples

	Caveats
	Root URL or page template?

	Lack of determinism

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.2.16 (2020-09-08)

	0.2.15 (2020-06-17)

	0.2.14 (2020-02-03)

	0.2.13 (2019-11-13)

	0.2.12 (2019-10-01)

	0.2.11 (2019-09-11)

	0.2.10 (2019-09-02)

	0.2.9 (2019-08-12)

	0.2.8 (2019-06-03)

	0.2.7 (2019-01-21)

	0.2.6 (2018-11-06)

	0.2.5 (2018-08-06)

	0.2.4 (2018-07-26

	0.2.3 (2018-05-29)

	0.2.2 (2018-04-19)

	0.2.1 (2018-04-10)

	0.2.0 (2018-03-30)

	0.1.0 (2018-03-15)

Indices and tables

	Index

	Module Index

	Search Page

Wagtail App Pages

This module provides full MVC support for wagtail pages. Using it, it’s possible to extend routing for a page by using
url configs and views. It addresses the same problem solved by wagtail’s own RoutablePageMixin, without breaking clean
MVC principles.

	Free software: MIT license

	Documentation: https://wagtail-app-pages.readthedocs.io.

Features

	Add URL endpoints to wagtail pages by simply providing a url config

	Use regular django views instead of routing methods in the page model

	Enrich (class based) views and request objects, so views always have access to the parent page

	Adds a reverse() method to pages, so we can do reverse lookups with respect to the page itself

	Provides a template tag to reverse urls within the same page (automatically detecting parent page if available)

	Full url conf support, including django 2.0’s new path() urls

Installation

Stable release

To install Wagtail App Pages, run this command in your terminal:

$ pip install wagtail_app_pages

This is the preferred method to install Wagtail App Pages, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Wagtail App Pages can be downloaded from the Github repo [https://github.com/mwesterhof/wagtail_app_pages].

You can either clone the public repository:

$ git clone git://github.com/mwesterhof/wagtail_app_pages

Or download the tarball [https://github.com/mwesterhof/wagtail_app_pages/tarball/master]:

$ curl -OL https://github.com/mwesterhof/wagtail_app_pages/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use Wagtail App Pages in your project, simply add it to your INSTALLED_APPS:

INSTALLED_APPS = [
 # ...
 'wagtail_app_pages',
 # ...
]

use the provided context processor:

TEMPLATES = [
 {
 # ...
 'OPTIONS': {
 'context_processors': [
 # ...
 'wagtail_app_pages.context_processors.parent_page',
 # ...
],
 },
 },
]

and use the provided mixin in your page model(s):

myapppage/models.py
from wagtail.core.models import Page
from wagtail_app_pages.models import AppPageMixin

class MyAppPage(AppPageMixin, Page):
 url_config = 'myapppage.urls'

When using this mixin, the url_config attribute becomes a requirement. It should provide a dot-separated path to a
valid django url config module:

myapppage/urls.py

from django.urls import path

from .views import ViewA, ViewB

urlpatterns = [
 path('A/', ViewA.as_view(), name='view_a'),
 path('B/', ViewB.as_view(), name='view_b'),
]

Examples

For a more in-depth example, we’ll create a wagtail page implementing a simple blog app. This example is a little
contrived, but it will demonstrate some of the more advanced functionality that can be implemented using app pages.

file: blog/models.py
from django.db import models
from wagtail.core.models import Page
from wagtail_app_pages.models import AppPageMixin

class Article(models.Model):
 slug = models.SlugField()
 title = models.CharField(max_length=200)

class BlogPage(AppPageMixin, Page):
 url_config = 'blog.urls'

To implement the blog functionality as an extension of the blog page, it references the following url config:

file: blog/urls.py
from django.urls import path

from .views import ArticleCreate, ArticleDetail, ArticleList

urlpatterns = [
 path('articles/', ArticleList.as_view(), name='article_list'),
 path('articles/<slug:slug>/', ArticleDetail.as_view(), name='article_detail'),
 path('article/new/', ArticleCreate.as_view(), name='article_create'),
]

This url config is used to add additional endpoints to the page routing. It essentially turns the blog page into a blog
app.

file: blog/views.py
from django.views.generic import CreateView, DetailView, ListView

from .models import Article

class ArticleDetail(DetailView):
 model = Article

class ArticleList(ListView):
 model = Article

class ArticleCreate(CreateView):
 model = Article

 def get_success_url(self):
 # on successful create, redirect to the article_list url *for the same parent page*
 # if we have more than one BlogPage, each will have its own ArticleCreate view,
 # and this redirect will always happen with respect to the parent BlogPage
 return self.parent_page.reverse('article_list')

These views mostly work the way they always do. The ArticleCreate view highlights one exception. Any class-based
view served through an app-page will have access to a parent_page attribute. This will be a reference to the app-page
that served it (the BlogPage, in this case).

The previous example also shows how to perform a reverse lookup within the scope of the page. App-pages will have a
reverse method that does just that.

Performing a reverse lookup from a template within the app is also easy; a template tag is provided for this. It will
find the parent page from the context, so there’s no need to supply it. This means that if there’s more than one
BlogPage within a project, these lookups will always return urls that stay within that app’s url structure.

The following example shows how to perform these lookups from the template:

{% load app_pages_tags %}

 {% for article in article_list %}

 {{ article }}

 {% endfor %}

Caveats

There are things to be considered when using this library.

Root URL or page template?

A page that uses the AppPageMixin, can route to different views using a supplied url config. In the case of the root
URL of the page (in other words, the actual page url), 2 different scenarios are possible:

	if there’s a root URL in the pages’ url config, it will be used as expected

	if no root URL is specified for the page, it will be served as any other wagtail page

This means that it’s up to the developer who uses this library to decide which is more appropriate for his case.

Lack of determinism

When using the regular django MTV (Model, Template, View) architecture, the act of calling reverse() or using the {%
url %} template tag is relatively straight forward. We always target a view in a way that should yield (no more than)
one url. This will always work, no matter the context.

Since this library introduces a different way to integrate urls and views, it won’t always be quite that simple.
Consider the following:

file blog/models.py
from django.db import models
from wagtail.core.models import Page
from wagtail_app_pages.models import AppPageMixin

class Article(models.Model):
 slug = models.SlugField()
 title = models.CharField(max_length=200)

class BlogPage(AppPageMixin, Page):
 url_config = 'blog.urls'

file blog/urls.py
from django.urls import path

from blog.views import ArticleDetail, ArticleList

urlpatterns = [
 path('articles/', ArticleList.as_view(), name='article_list'),
 path('articles/<slug:slug>/', ArticleDetail.as_view(), name='article_detail'),
]

file blog/views.py
from django.views.generic import DetailView, ListView

from .models import Article

class ArticleList(ListView):
 model = Article

class ArticleDetail(DetailView):
 model = Article

<!-- file blog/article_list.html -->
{% load app_page_tags %}

 {% for article in article_list %}

 {{ article.title }}

 {% endfor %}

This example will attach 2 views to a page, an article list view and an article detail view. The list view will
render links to the detail view for the respective rendered article. The url lookup will happen within the same app
page, and will work as desired. Any view served through wagtail_app_pages will have access to the parent_page object,
available in the context.

If the view is served from outside of the app, the {% app_page_url %} won’t be able to resolve the url lookup. This
is a direct consequence of extending pages with urls, although there are different ways to deal with it.

	Can we assume that only one blogpage ever exists? In that case, a very simple custom templatetag could resolve it:

file templatetags/blog_tags.py
@register.simple_tag
def blog_page_url(name, *args, **kwargs):
 blog_page = BlogPage.objects.live().first()
 return blog_page.reverse(name, *args, **kwargs)

	Multiple blogpages exist, but one per site In this case, one could create a site setting to specify the main blog
page for that site. Any code that has access to the request object, could use this to perform a
request.site.blog_page.reverse Even if there are multiple versions of the blog page for the site, this could be
used to find the “default one”.

	Multiple blogpages exist, and we want to use a specific one If we want all url lookups from a certain page to
always use a specific blogpage instance, we could simply link these together in the content. For instance, we could
write a ProductsPage to serve all the views of a product catalogue. We could have 2 versions of this products page,
one main one, that shows all the products, and is set to show up in the menu. Aside from this, we’d have a
promotion version, configured to only show products with a promotional state. We’ll want the main version to be
used by default, and the promotional one when linking from the blogpage. This could simply be achieved by adding a
parentalkey to the blogpage model, and explicitly linking the pages together.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/mwesterhof/wagtail_app_pages/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Wagtail App Pages could always use more documentation, whether as part of the
official Wagtail App Pages docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/mwesterhof/wagtail_app_pages/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up wagtail_app_pages for local development.

	Fork the wagtail_app_pages repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/wagtail_app_pages.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv wagtail_app_pages
$ cd wagtail_app_pages/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 wagtail_app_pages tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

Tips

To run a subset of tests:

$ python -m unittest tests.test_wagtail_app_pages

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Credits

Development Lead

	Marco Westerhof <westerhof.marco@gmail.com>

Contributors

None yet. Why not be the first?

History

0.2.16 (2020-09-08)

	Wagtail 2.10 support

0.2.15 (2020-06-17)

	Wagtail 2.9 support

0.2.14 (2020-02-03)

	Wagtail 2.8 support

0.2.13 (2019-11-13)

	Wagtail 2.7 support

0.2.12 (2019-10-01)

	Re-integrating multi-site fix

0.2.11 (2019-09-11)

	Correctly update wagtail 2.6 support in setup.py

0.2.10 (2019-09-02)

	Wagtail 2.6 support

0.2.9 (2019-08-12)

	fix issue regarding url resolving in multi-site scenarios

0.2.8 (2019-06-03)

	Wagtail 2.5 support

0.2.7 (2019-01-21)

	Wagtail 2.4 support

0.2.6 (2018-11-06)

	update requirements

0.2.5 (2018-08-06)

	ensure that parent page will also be available as “page” in the context

0.2.4 (2018-07-26

	Support for app page revisions

0.2.3 (2018-05-29)

	Django 1.11 LTS support (issue #1)

0.2.2 (2018-04-19)

	add context processor to provide parent_page to context

0.2.1 (2018-04-10)

	fix templatetags missing in dist

0.2.0 (2018-03-30)

	change to beta

0.1.0 (2018-03-15)

	First release on PyPI.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Wagtail App Pages’s documentation!

 		
 Wagtail App Pages

 		
 Features

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Examples

 		
 Caveats

 		
 Root URL or page template?

 		
 Lack of determinism

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.2.16 (2020-09-08)

 		
 0.2.15 (2020-06-17)

 		
 0.2.14 (2020-02-03)

 		
 0.2.13 (2019-11-13)

 		
 0.2.12 (2019-10-01)

 		
 0.2.11 (2019-09-11)

 		
 0.2.10 (2019-09-02)

 		
 0.2.9 (2019-08-12)

 		
 0.2.8 (2019-06-03)

 		
 0.2.7 (2019-01-21)

 		
 0.2.6 (2018-11-06)

 		
 0.2.5 (2018-08-06)

 		
 0.2.4 (2018-07-26

 		
 0.2.3 (2018-05-29)

 		
 0.2.2 (2018-04-19)

 		
 0.2.1 (2018-04-10)

 		
 0.2.0 (2018-03-30)

 		
 0.1.0 (2018-03-15)

_static/up.png

_static/up-pressed.png

